Evidence for specific binding sites for guanine nucleotides in adipocyte and hepatocyte plasma membranes. A difference in fate of GTP and guanosine 5'-(beta, gamma-imino) triphosphate.
نویسندگان
چکیده
Binding and degradation of GTP and guanosine 5'-(beta, gamma-imino)triphosphate (Gpp(NH)p by plasma membranes from rat liver and fat cells were investigated. Gpp(NH)p is hydrolyzed predominantly by nucleotide pyrophosphohydrolases in the membranes, whereas GTP is hydrolyzed primarily by nucleotide phosphohydrolases. These enzymes are not specific for the guanine nucleotides since co-addition of the analogous adenine nucleotides spares their hydrolysis. Both Gpp(NH)p and GTP are taken up by the membranes at sites which, to the extent that high concentrations of the corresponding adenine nucleotides fail to inhibit uptake, appear to be specific for guanine nucleotides. Gpp(NH)p taken up at these sites remains essentially intact irrespective of the degree of hydrolysis of unbound Gpp(NH)p by nucleotide pyrophosphohydrolases, indicating that the binding siteis incapable of degrading Gpp(NH)p. GTP and GDP inhibit competitively the binding of Gpp(NH)p; the binding constants for the three nucleotides are similar (0.1 to 0.4 muM) and are in the same range required for their effects on adenylate cyclase activity. Binding of the nucleotides is inhibited by sulfhydryl agents, suggesting that a sulfhydryl group is involved in the binding process. In contrast to binding of Gpp(NH)p, uptake of GTP is accompanied by substantial hydrolysis, primarily to GDP, under incubation conditions (high [ATP] plus ATP regenerating system) in which [GTP] in the medium remains essentially constant. GDP bound to the membranes is progressively hydrolyzed to 5'-GMP. Thus, GTP and Gpp(NH)p, although binding to the same specific sites, are differentially susceptible to hydrolysis at their terminal phosphates when bound to these sites. These findings are discussed in terms of the markedly different potencies of GTP and Gpp(NH)p as activators of adenylate cyclase systems.
منابع مشابه
Nucleotide regulation of vasoactive intestinal peptide binding to bovine thyroid plasma membranes.
The specific binding of vasoactive intestinal peptide (VIP) to bovine thyroid plasma membranes is inhibited by guanine nucleotides. Guanosine 5'-triphosphate (GTP) and the non-hydrolyzable GTP analogs guanosine 5'-beta,gamma-imidotriphosphate (Gpp(NH)p) and guanosine 5'-O-(3-thiotriphosphate) (GTP-gamma-S) inhibited markedly the binding of VIP to its receptors. This inhibition was higher with G...
متن کاملEffect of guanine nucleotides on polyphosphoinositide synthesis in rat liver plasma membranes.
The effect of guanosine 5'-[gamma-thio]triphosphate (GTP[S]) on PtdIns and PtdIns(4)P kinase activities was measured in rat liver plasma membranes. The addition of [32P]ATP resulted in the rapid incorporation of 32P into PtdIns(4)P and PtdIns(4,5)P2, with maximal levels reached within 30 s. GTP[S] (25-500 microM) increased the rate and magnitude of [32P]PtdIns(4)P and [32P]PtdIns(4,5)P2 formati...
متن کاملadenylate cyclase activity
Adipocyte membranes from control rats exhibited a functional Gi (inhibitory guanine-nucleotide-binding protein) activity which could be assessed either by the inhibitory action of low concentrations of guanosine 5-[/Jy-imido]triphosphate (p[NH]ppG) upon forskolin-stimulated adenylate cyclase activity or by the inhibitory action of high concentrations of GTP upon isoprenaline-stimulated adenylat...
متن کاملGuanine nucleotide regulation of VIP binding to rat peritoneal macrophage membranes.
In the present study, we have examined the effect of guanine nucleotides on VIP binding to rat peritoneal macrophage membranes. Both guanosine 5'-triphosphate (GTP) and its nonhydrolizable analog guanosine 5'-beta, Y-imidotriphosphate [Gpp(NH)p] inhibited, in a dose-dependent manner, the VIP binding to its specific binding sites. Half-maximal inhibition (IC50) was observed at 5.4 +/- 0.5 microM...
متن کاملSolubilization of rat liver vasopressin receptors as a complex with a guanine-nucleotide-binding protein and phosphoinositide-specific phospholipase C.
Vasopressin V1 receptors were solubilized from rat liver plasma membranes with the detergent lysophosphatidylcholine. [[3H]Arginine]vasopressin (AVP) binding to the solubilized preparations was specific and saturable, with a dissociation constant of 0.6 nM. Cross-linking of [125I]vasopressin to the solubilized fraction, studied by SDS/polyacrylamide-gel-electrophoretic analysis, demonstrated th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 250 18 شماره
صفحات -
تاریخ انتشار 1975